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NUMERICAL RESULTS FOR LOW FREQUENCY SCATTERING
BY ELLIPTIC CYLINDERS AND BY ISOLATED

SEMI-ELLIPTIC PROTUBERANCES

by

J. E. Burke, E. J. Christensen, and S. B. Lyttle

ABSTRACT

The low frequency approximations ("closed form" and series)
derived previously for the fields scattered by elliptic cylinders, and
by semi-elliptic protuberances, are applied numerically. For the two
cases, , or H parallel to the generators, the results presented in-
clude total scattering cross sections, forward and back scattered inten-
sity and phase curves, and far-field scattering patterns; for various

angles of incidence, various eccentricities, and for various values of
A-1.1 (where h and -a. is the major axis of the scatterers).
Attention is restricted to the low frequency range not covered by pub-
lished tables of Mathieu functions.

1. INTRODUCTION

The problem of scattering by a perfectly conducting elliptic cylin-

der is separable in elliptic coordinates and the solution can be represented
1, 2, 3

as an infinite series of periodic and radial Mathieu functions . How-

ever, since Sieger's original derivation of this solution in 1908, the only

detailed calculations based on it appear to be those of Morse and Rubenstein4

for the strip (the elliptic cylinder with eccentricity equal to 1). In this re-

port the exact series are used to obtain numerical values for the scattering

amplitudes for a family of elliptic cylinders (ranging from strips to circles),

and for the corresponding semi-elliptic protuberances on ground planes.

For limited values of ka I.Qwhere k = 2yr/) and 2Z is the major

axis of the cylinder, tables and graphs 5 ,6 of the Mathieu functions can be

used to evaluate the exact series for the scattering amplitudes. In the pre-

sent report we consider the essentially complementary range I- 1.1 and

evaluate the series in "closed form". The closed forms are obtained by

I



initially truncating the exact series and then using values for the Mathieu
7

functions obtained from known low frequency approximations . The valid-

ity of these forms is investigated by comparing them numerically with

"exact" results based on tabulated functions. In addition to considering

closed forms, we demonstrate the utility of elementary series approxima-

tions 7 (in powers of k ) for the scattering coefficients and for the scatter-

ing amplitudes.

Although we work with relatively simple analytical expressions,

their numerical application is complicated by the fact that four variables

are involved; AZ, the eccentricity, the angle of incidence, and the angle

of observation. To make the computations tractable they were performed

on a Burroughs 220 electronic computer. The extensive numerical results

thus obtained are preserved in permanent tables and in punched cards;

the latter provide data in a usable form for electronic computing programs
8, 9

on related multiple scattering problems 9 It is not possible to present

the complete set of tables here and we merely illustrate their contents

through a series of graphs. For cylinders, and for protuberances, these

graphs include forward and back scattered intensity and phase curves,

total scattering cross sections, and far-field scattering patterns; for var-

ious angles of incidence, various eccentricities, and for various values of

k4a 1.1. A variety of results are given so as to demonstrate the overall de-

pendence of the amplitudes on the four variables.

In the following, we begin with a brief review of the scattering

problem and the derivation of the series solution by separating variables

in elliptic coordinates. Then approximations for the Mathieu functions

are introduced, and the accuracy of the resulting expressions (closed form

and series) for the amplitudes is discussed. In the final section the tables

that have been compiled are described and graphs of results taken from

them are given.
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2. REVIEW OF SCATTERING BY AN ELLIPTIC CYLINDER

In two dimensions the scattering of a plane wave by a cylinder par-

allel to the ,- axis is specified in the region external to the scatterer by

a solution of

satisfying prescribed conditions at the surface of the cylinder. The solu-

tion has the form

( ) -t-) = ( ) . U

where

(3)

represents the incident plane wave, and where the associated scattered

wave fulfills

(4)r

The "scattering amplitude" indicates the "far-field" response

in the direction JO to plane wave excitation of direction 4P.

For the elliptic cylinder the boundary conditions are applied on

the surface
(5) 7z2 + Y = 1, -00<<

(5) iT bz1

where .2a and .b are the major and minor axes respectively; see Fig. 1.

In particular, for an incident electromagnetic field specified by either

' - = r" or by '/ - (the two principal polarizations), the

.. component of the corresponding total field on the surface of a perfect

conductor satisfies either

(6) v , Z=*

or

(7) i , ~ '

3



Y (x,y)

r

b

7KaJ

Fig. 1 Geometry for the scattering of a plane wave by an elliptic cylinder.

IV -4N

Fig. 2. Elliptic coordinates.
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I

To solve the problem posed for the elliptic cylinder, one introduces

elliptic coordinates defined by

(8) re'~

as illustrated in Fig. 2, the coordinate curves = constant and 69 = con-

stant are ellipses and hyperbolas respectively, and each curve has foci on

the X axis at ic/2. Then Eq. (1) becomes

h -_ ,(9) + w6 - 2,9)j

and the cylinder (5) is specified by the complete coordinate surface =

where

(10) Z---6 •

By separating variables, the solution of the boundary value problem can

be written as a series of particular integrals of (9) of the form e(q)R.

thus

where the constants Xn are determined by applying the boundary conditions

at 51=C.

In (11) the S- are the periodic Mathieu functions (even or odd, of

period T or .e ) and the R., are the radial Mathieu functions of the first

and second kind (analogous to Bessel functions of the first and second kind).

These functions are discussed in detail in the literature 2 ,10, 11 and in the

following we only state those forms and properties needed to make (11)

explicit.

For a given value of A, the periodic Mathieu functions, which we

denote by (6?) (instead of by Z5 (,:a 6)as in reference 11), form a

complete set of orthogonal functions:

(12) S e d 0 . ) (G)C-1 = i o rn O
0 C Ir / YZ d (2Y!,-I Yn YJ

j = ) ~.

5i



where the present /M)'1 equal those of reference 11 divided by e.r Their

Fourier expansions are of the form

(13) B-

where means that m and t have the same parity and where the val-

ues of the coefficients depend on the normalization of the 8._(s). as in refer-

ence 11 we use

(14)
21 C-, (h) d6 () ZA -

The present functions are related to the and 5, of references 2 and

10 through

115) )

The radial functions of the first kind 3Y (.) may be written as

series of Bessel functions:

(16)

Oo _7, (n-)/z m (,

The functions of the second kind, N~r n ) follow from (16) by replacing the

Bessel functions by the corresponding Neumann functions. However, for

small values of h, the expansions involving products of Bessel and Neumann

functions are more convenient:

(17) N = / 9,, (he,

For large values of r, the J and N behave asymptotically like

their Bessel function counterparts, i.e., J- I kC)r) - /v

In particular, the linear combinations

(18)T_.M6r)

0 ~7/20



are analogous to the Hankel functions and correspond to outgoing cylindri-

cal waves as

In order to express the formal representation (11) for * in terms

of the above functions, it is convenient to consider the wave functions

and U separately. Thus, employing the contracted, notation 2F = F +- 5

the usual expansion of the plane wave may be written as

(20) o6(4,p V~ i 7 5) eJ(-r:

Similarly, for both polarizations, the representation of a in terms of

outgoing radial functions is of the form

t(n in VA in 'yt

The scattering coefficients d. ,determined by applying the boundary con-

dition (6) or (7) are given by

and

(23) C~Hc, ,' ~ t.(r =

The Mathieu function series representation for the scattering amp-

litude follows by letting " or Ar become infinite in a of (21). Thus,

using the asymptotic form of H. of (19), we obtain

(24) *A'6 e kr___

where

(J 'JYL

The amplitudes for the elliptic cylinders can be used to obtain the

analogous ones for semi-elliptic protuberances on ground planes; see Fig. 3.

These follow by taking twice the symmetric or anti-symmetric components

of the cylinder results with respect to reflection of one angle in the plane of
12

one axis; a procedure equivalent to that used originally by Rayleigh to

7
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r

(a)

r

T-

(b)

Fig. 3. Geometry for scattering by a semi-elliptic protuberance on a

ground plane. Case (a) shows the major axis perpendicular to the
ground plane (6 = b/a- p < 1) and case (b) shows the
minor axis perpendicular (6 = '/ = a/b = p- > 1); 8 = 0
corresponds to perpendicular strips, 8 = 1 to semi-circles,
and 8 = co to flat strips.
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C

treat the semi-circular protuberance. Thus, if the minor axis is in the

ground plane X=0 (see Fig. 3a), if T- is the direction

of incidence, and if H is parallel to the generators, we obtain

(26) ;T- 5. (P P P

Similarly for i- parallel

(27) I_ -4-.) -_r 1P - _ ,

The corresponding results for the major axis in the ground plane (see Fig. 3b)

follow from (26) and (27) by replacing &(vu) by(, fa ), or,

equivalently, by interchanging a and b.

The real part of the scattering amplitude for the special value &? =

is proportional to the total scattering cross section Q.Thus, for cylinders

(28) i e)=I ""I ( )I

and for protuberances

A(29) k -~~',~~

For limited values of ka > I numerical values for the scattering

amplitudes (25) to (27) can be obtained by using tables and graphs 5 ,6 of

the Mathieu functions. If ka. is large enough,one can use asymptotic
13, 14

methods to obtain high frequency approximations . On the other hand,

for k< I.C the required values of the Mathieu functions are not readily

available. They could be calculated by employing tables 1 5 , 16 of the Fourier

coefficients An , BY. However, these are given for values of =-

and consequently ea and the ratio b=1 cannot be varied independently.

In addition, this coupling complicates the calculation of the radial functions;

in general, for the given A the values of the Bessel and Neumann functions

needed in (16), (17), etc., are not given in published tables.

In the following sections we restrict attention to computations in

the low frequency range not covered by published tables. The coupling

described above is avoided by using truncated series approximations for

9 1]



the Mathieu functions. Thus, in terms of 9 b/a, X-(Aa)/R and L ,6t 2
(where 4z 0,5772/5.. is Euler's constant), for the radial functions we use

( 3 0 ) __

and

N, [J P+ + (i-f-8,) f- 'JY (.39 94-9

(31) .

x~it(1+)li 3*e*i 91~ N )r NY ~

where a, 4-- indicates the interchange of - and b.

Similarly, for the derivatives with respect to we use7

(32) , r 1 / xSJ, I/ 0-H-) -(3+f~~A
X' ZL1R

+ (7*- r*PL#¢ ,-+ )=(aA--.)

" " o-'eeO]!'hL :.z::/10



Many truncated series approximations for the periodic Mathieu

functions appear in the literature 2 ' .l For present purposes it is

convenient to use those given in reference 10:

(34)
-. CO

CC0,66, W,6.2 - - C .6 'P - 't < j9 C1 62

C 6P )-t e41( % P _ _ '- 5 -- z2-
,6~6 3q1P__

These give most directly the angular factors 5n ~(JJ z  which

appear in (25). Using Eqs. (30) to (34) the exact series for the amplitudes

can be evaluated in closed form.

Explicit series approximations for the scattering amplitudes have

been obtained 7 by inserting (30) to (34) into (25) and expanding in powers

of k (treating 1. as a constant). The amplitudes correct to order

thus obtained are given in reference 7 and they will not be repeated here.

However, for future reference we note some leading approximations. Thus

for cylinders with H parallel the real and imaginary parts to order are

4-4- (. +

l? p77

6p11Po



Similarly, letting D the amplitude for E parallel is speci-

fied to order P2 by

(36 L £D (&aj [iD(L-2 D)

3. ACCURACY OF THE APPROXIMATIONS

In this section we investigate the numerical validity of the closed

forms and series approximations for treating elliptic cylinders with arbit-

rary eccentricity and ka,< 1.0. The scattering coefficients are considered

first (for ka i.. ) and then the scattering amplitudes (for lea 1.1 ). In

each case the range of kd includes some values in common with the tables

of references 5 and 6.

Consider initially the closed form approximations Zma =C£5)2)Y-6 3 fj-Jm 2

etc., for the coefficients eZ. for n =0 and 1 (the leading coefficients).

For the limiting cases of strips o) and circles Q =), the accuracy

of these formulas follows by comparing them numerically with "exact" re-

sults; results obtained by using tabulated values 1 8 for the Bessel functions,
14,15

and for the Fourier coefficients , in the series representations for the

radial functions (e. g. , in Eq. (16)). Thus, as illustrated in Table I, for

-=-0 or I and aZ --1-2, it is found that the closed forms for the leading

coefficients practically equal exact values. Similarly, for intermediate

values of e (i. e., C<q < 1 ), and 1<4aZ<Li2 the closed forms agree with

calculations based on references 5 and 6. Such numerical comparisons in-

dicate that for ,2 1..e) the closed forms for the scattering coefficients are

uniformly accurate for all e and that the approximation for a.1" when =

is the least accurate.

Numerical results for a- . with )2 >, 2 show that for the range k <1
of primary interest, and for the larger range ka . all but a - and a.

are negligible compared to the leading coefficients. These higher order

terms are most significant for the circle, while for the strip only 27z

12



Im aeo Im ael

p p = 0  p: 0
ka E C E C ka E C
1.0 0.114 0.114 -0.409 -0.409 1.0 -0. 273 -0.273

1. 1 0.214 0.214 .. .. 1
1.2 0.305 0.305 -0. 350 -0. 350 1.2 -0. 348 0. 349

Im a+ Im a+

ae 0
p = 1p = 1  p = 0

ka E C ka E C E C

1.0 -0.428 -0.428 1.0 0.328 0.325 0.437 0.437
1.I1 -0.464 -0.465 1. 1 0.323 0.318 ......

[. z -0.488 -0.489 1.2 0.307 0.301 0.500 0.500

Table I. Comparison of "exact" (E) and closed form (C) values for the
imaginary parts of the leading non-zero scattering coefficients for

t p 0) and for circles (p = ); note that a+= an- 0strips (p = 0 daan = ao for p = 1.0. The exact values are
based on tabulated functions and the closed forms on the formulas
Im a7 = (30)(31) [(30)' + (31)2 ] - and Im a+ = (32)(33) [(32)2 + ( 3 3 )"] -1

Jn an

13



needs to be retained. For the circle, the sum of the absolute errors in-

troduced by the closed forms for A>,Z is less than 2 percent of the

corresponding component of a leading coefficient.

As shown in Fig. 4, for certain ranges of the parameters, the

closed forms for the coefficients may be replaced by truncated series.

In general, the smaller the value of p the larger the range of ka. for

which the series apply; this is illustrated in Fig. 4a by the series for the

imaginary part of at. In particular, the agreement of the different approx-

imations in Fig. 4a, when 0-. is typical of the results for the real and

imaginary parts of at + and a- -in general, the results for the other co-

efficients are not as good. The maximum range of ha- for all P follows

by comparing the series with exact results for the circular cylinder. Thus,

Fig. 4b and the e = . curves of Fig. 4a determine the maximum ranges

of the series for the real and imaginary parts of the leading coefficients

a.- excepted). (The series for a- are more accurate than those con-
eo do

sidered, e. g., the 0 series is valid for all e if ,&. i..)

The accuracy of (34) for calculating the angular factors

follows by comparing them numerically with results based on the tabulated

Fourier coefficients. Thus, for A:- . 1 (i. e. , for 0 -a.L and 1.)

it is found that the two results differ by less than 1 percent. These approxi-

mations are least accurate for the strip (e = o) for which case A = ka/)

for the circle (F= 1)) - o and (34) reduces to simple trigonometric

functions (independent of A ).

Combining (34) with the closed forms for the scattering coefficients

leads to relatively accurate expressions for the leading terms of the series

(25). Of course, because of the angular dependence, the errors in the indi-

vidual terms can cancel or add up to give more or less accurate values for

the amplitudes. As an illustration of the overall accuracy of the final forms,

Fig. 5 compares closed form and exact results for the circular cylinder

for H parallel; thus, for example, the closed forms for l .I are seen to

be accurate to within 3. 5 percent for all angles of observation. Better

14
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Fig. 4. Closed form and series approximations versus ka < 1. 2 for

(a) Im a +  (for different values of p = b/a), and for (b) the

real and e imaginary parts of leading scattering coefficients for

circular cylinders (p = 1). The solid curves are closed forms

and the dashed ones are series approximations; the numbers give

the highest power of k retained in the series.
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overall agreement is obtained for smaller ka.) the circular cylinder

with E parallel, and for strips for both polarizations; e. g., for the case

of Fig. 5, the closed forms and exact values are practically identical

for kj .0,

For special ranges of the parameters, the closed forms can be

replaced by elementary series approximations; e. g. , (35) and (36). This

is illustrated in Figs. 6 and 7 which compare closed form and series re-

sults for cylinders. Thus, for example, Fig. 6 shows that for H paral-

lel, the //approximation (35) applies (more or less) for . when

e: 0. 5. Similarly, for E parallel, Fig. 7 demonstrates that the k

series (36) canbe usedfor ha:_ .7 when p 0.0 The full range of

can be covered by suitably restricting ka, and/or the angles; e. g. , the

series for E parallel can be used for all P if AOZ < 0.7 and the direc-

tion of observation is not near the back direction (see Fig. 7b).

4. TABLES AND GRAPHS

The low frequency approximations described in the previous sec-

tions have been applied numerically in detail. Most of the calculations

were performed on a Burroughs 220 electronic computer and the results

are preserved in permanent tables. For cylinders and for protuberances,

for F and / parallel, these tables include closed forms for the real and

imaginary parts of the scattering amplitudes, and for the corresponding

intensities, for the ranges

L z DA, =Z.2

(39) = =.

In addition, tables of forward and back scattered intensities and phases,
/ye(%a)j RP ' 4 '-.C)- and of -S In ,T- have been compiled for

0.. 9°('2.
5
o< <10o) and the values of and kaz of (37); the
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Fig. 6(a).

Fig. 6. Plots of Ig+(cp, 450)I2 versus cp for (a) fixed p = b/a = 0.5

(and different values of ka), and for (b) fixed ka = 0. 5 (and
different values of p); the dashed curves are based on the k 4

series (35).

19



P= 0 .5

P 0

p 0.25

0.

0.7

P .

Fig, 6 (b).

20



S90
°0

ka=O .7

k a=. .

MAJOR k .

AXIS

1 .0 2.0

DIRECTION

IlNC IDEN45o

Fig. 7(a).

Fig. 7. Plots of jg_(p, 450)J2 versus cp for (a) fixed p = 0.5 (and
different values of ka) and for (b) fixed ka = 0. 7 (and different

values of p); the dashed curves are based on the k 2 series (36).
For case (a) the series equals the closed form when ka < 0. 3.
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smaller increments of were used for protuberances for near-grazing

incidence (with respect to the ground plane) to facilitate obtaining the
9

analogous results for elliptically striated surfaces .

It is not possible to present the complete set of tables here, and

in the following we merely illustrate their contents through a series of

graphs. These are given in four sets corresponding to cylinders with E

perpendicular or parallel (Set I and Set II), and to protuberances with E

perpendicular or parallel (Set III and Set IV). The individual graphs are

labeled Graph I-1, Graph 1-2, etc. , where the integer always refers to

the same quantity. Thus, without regard to a specific set, the graphs are

described in general by the following:

Graph 1: k/4 times the total scattering cross section (i.e. , the negative
of the real part of the scattering amplitude in the forward direc-
tion) versus the angle of incidence (y 0 ), for different values
of p = b/a and ka.

Graph 2: Forward scattered intensity versus the angle of incidence,
for different values of p and ka.

Graph 3: Forward scattered intensity versus the angle of incidence,
for different values of p and cpo .

Graph 4: Back scattered intensity versus the angle of incidence, for
different values of p and. ka.

Graph 5: Back scattered intensity and phase curves versus ka, for
different values of p and po"

Graph 6 and higher:
Far-field scattering patterns versus the angle of observation
( p), for different values of p , ka, and cpo .

More detailed descriptions of the individual graphs (e. g. , the

explicit values of the parameters considered) are listed at the beginning

of each set.

The authors wish to thank Miss Mary Brockett who drew the graphs.
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SET I: Graphical Results for Elliptic Cylinders and U Parallel.

Graph I-1: -Re g+(:0op C0O) versus g 0 for ka = 0. 5, 0. 7, 0. 9,

and 1. 1, and different values of p. *

Graphl-2: 1g+( 0 ," o)W versus y for ka = 0.5, 0.7, 0.9, and 1. 1

and different values of p. *

Graph 1-3: g+(PO 0,%0)I2 and the phase of g+(g0o' 0o) versus ka<l. 1,

for g0 = 00 (a), 45 0 (b), and 90 0 (c), and different values of p. *

GraphI-4: 1g+(T+%0o'go)12versus go for ka = 0.5, 0.7, 0.9, andl.l,and

different values of p. *

Graph 1-5: 1 g+(r+%0o, 0) 12 and the phase of g+(7r+cp0o , g) versus ka< 1. 1,

for go = 00 (a), 45°(b), and 900 (c), and different values of p.*

Graph 1-6: Ig+ ( 0,go) I' versus g0 for p0o = 0(a), 450 (b), and 900 (c),

ka = 0. 3, and different values of p. *

Graph 1-7: lg+(CP, o) f2 versus Tp for To = 0(a), 45 0 (b), and 90°(c),

ka = 0.5, and different values of p.*

Graph 1-8: Ig+(0,cpo) V versus yp for go = 0(a), 450 (b), and 900 (c),

ka = 0.7, and different values of p. *

Graph 1-9: Ig+(cpo) 1 versus y. for go = 0(a), 450 (b), and 90'(c),

ka = 0.9, and different values of p. "

Graph 1-10: lg+((0,Cpo)12 versus y for go = 0(a), 450 (b), and 900 (c)

ka 1. 1, and different values of p. -

*The number next to a curve gives the value of p = b/a =

(minor axis/major axis).
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SET II: Graphical Results for Elliptic Cylinders and E Parallel.

Graph 11-1: -Re g_(y 0o, 0o) versus co for ka = 0.5, 0. 7, 0.9,

and 1. 1, and different values of p.

Graph 11-2: Ig_(cpo,CPO) 12 versus co for ka = 0.5, 0.7, 0.9, and 1.1

and different values of p. *

Graph 11-3: 1 g_(CPO, 0O)12 and the phase of g_(_ 0o , cp ) versus ka 51. 1,

0( 0for q.o = 0 (a), 45 (b), and 90 0 (c), and different values of p.

Graph 11-4: lg_(r+P0o,%o) 2 versus cpo for ka = 0.5, 0.7, 0.9, and 1.1

and different values of p. *

Graph 11-5: Ig_(r+po,) 12 and the phase of g_(r+yo, p0) versus ka<1.1,

for TO = 0 0 (a), 45 0 (b), and 90 0 (c), and different values of p. *

Graph 11-6: 1g_(cp, cpo) I' versus cD for cp° = 0(a), 45 0 (b), and 90 0 (c),

ka = 0. 3, and different values of p.

Graph 11-7: I g.(0, CPO) 12 versus cp for cpo = 0(a), 45 0 (b), and 90 0 (c),

ka = 0. 5, and different values of p. *

Graph 11-8: Ig_(CP,CPo) 12 versus cp for %o = 0(a), 45 0 (b), and 90 0 (c),

ka = 0. 7, and different values of p. :-

Graph 11-9: lg_(P,p o) 2 versus cp for cpo = 0(a), 45 0 (b), and 90 0 (c),

ka = 0. 9, and different values of p.*

Graph II-10 Ig_(P,o) 1
2 versus cp for yo = 0(a), 45 0 (b), and 90 0 (c),

ka = 1. 1, and different values of p. *

*The number next to a curve gives the value of p = b/a =

(minor axis/major axis).
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SET III: Graphical Results for Semi-Elliptic Protuberances and H Parallel.

Graph III-1: -Re f+(po, Tr-cpo) versus co for ka = 0. 5, 0. 7, 0. 9,

and 1. 1, and different values of 8.

Graph 111-2: I -f+(yo,-cpo ) 2 versus To for ka 0.5, 0.7, 0.9,

and 1.1, and different values of 8. *

Graph I-3: If+(%,T o-0o)1' and the phase of f+( po, 7T 0o) versus ka<l. 1,

for yo = 00 (a) and 45 0 (b), and different values of 6.

Graph III-4: If +(-'Po, -C0o) 1 versus CPO for ka = 0.5, 0. 7, 0.9,

and 1. 1, and different values of 6.

Graph 111-5: If+(-cpo, Trcpo) I2 and the phase of f+(-% , 1T-co ) versus ka< 1. 1,

for co = 450, and different values of 8. *

Graph 111-6: If+(,I-cpo) 12 versus cp for yo = 0, 450, and 800,

ka = 0. 3, and different values of 8. *

Graph 111-7: If+(cp,T-y 0o)j 2 versus cp for y° = 0, 450, and 800,

ka = 0. 7, and different values of 6. *

Graph 111-8: I f+(cp, ir- 0o) 12 versus cp for cp° = 0, 450, and 900,

ka = 1. 1, and different values of 6. *

*The number next to a curve gives the value of 6 = '/ =
(axis II ground plane)/(axis J ground plane); 6 = 0 corresponds to
perpendicular strips, 8 = 1 to semi-circles, and 6 = oo to flat strips
(see Fig. 3).
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SET IV: Graphical Results for Semi-Elliptic Protuberances and Parallel.

Graph IV-l: -Re f-(cpo, Tr-to) versus to for ka 0. 5, 0. 7, 0. 9,

and 1. 1, and different values of 6.

GraphlV-2: lf_(cpo, ro) l versus cpo for ka = 0.5, 0.7, 0.9,

and 1. 1, and different values of 6.*

Graph IV-3: If_(cpo, Tr-yo) I and the phase of f.(cp0 , Tr-To) versus ka<l. 1,

for y o = 00 (a) and 45 0 (b), and different values of 6.

Graph IV-4: If_(-%o , 1T- cpo ) j2 versus CO for ka = 0. 5, 0. 7, 0. 9,

and 1. 1, and different values of 6. *

Graph IV-5: If_(-(P,I-P 0O) l and the phase of f-(-cp 0,CPo) versus ka 5 . 1,

for co = 450 and different values of 6.*

Graph IV-6: fCPTr CP.)12 versus cp for = 0, 450, and 800,

ka = 0. 3, and different values of 6. *

Graph IV-7: If_(p,Tr-cpo ) 2 versus cp for cp0 = 0, 450, and 80 0,

ka = 0. 7, and different values of 6. *

Graph IV-8: If_(, r- 0O)12 versus cD for = 0, 450, and 900,

ka = 1. 1, and different values of 6.*

*The number next to a curve gives the value of 6 = 1f/ =
(axis 11 ground plane)/(axis J ground plane); 6 = 0 corresponds to
perpendicular strips, 6 = 1 to semi-circles, and 8 = oo to flat strips
(see Fig. 3).
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